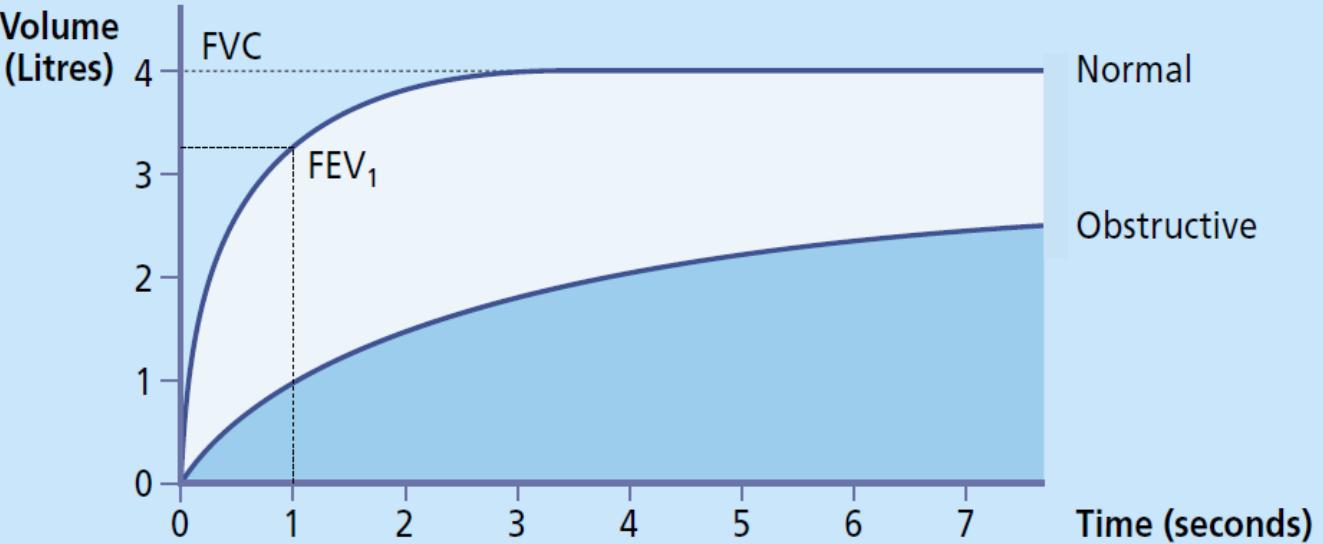


Spirometry

Dr. Tran, Thanh

Medical Educator, NTGPE

AIMS


- Understand that spirometry is a key investigation to aid diagnosis of asthma and COPD in general practice
- Understand when to request spirometry
- To be able to assess the quality of the test (acceptable, invalid, ?needs repeat)
- Interpret FEV₁, FVC and FEV₁/FVC and flow-time graphs and volume-flow loops to aid diagnosis
- Use patient's experience to engage in a conversation of behavioural change

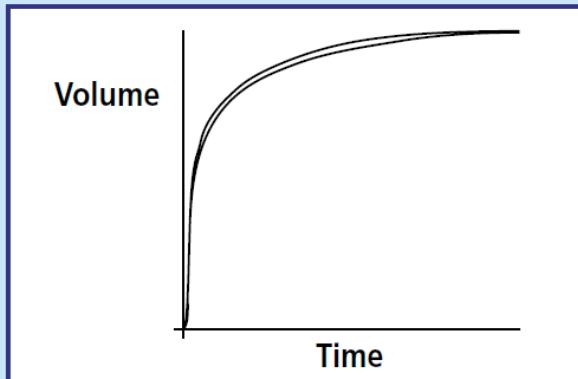
Uses of spirometry

- For the Dr- aids in diagnosis-
- ?Obstructive lung disease
 - ?Is it asthma
 - ?Is it COPD
- ?Restrictive lung disease
 - Refer to respiratory physician for Pulmonary Function Tests
- For the patient-
 - *Experiencing and recognising* the problem
 - Supports behavioural change eg. Correct inhaler use, smoking cessation

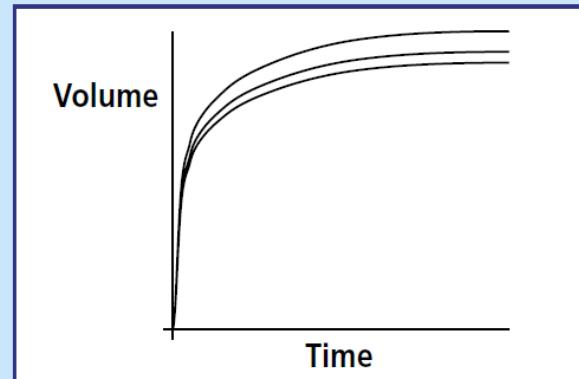
Spirometry

Forced Expiratory Volume in 1 second (FEV₁) and Forced Vital Capacity (FVC)

- **Spirometry gives three important measures:**
 - FEV₁: the volume of air that the patient is able to exhale in the first second of forced expiration
 - FVC: the total volume of air that the patient can forcibly exhale in one breath
 - FEV₁/FVC: the ratio of FEV₁ to FVC expressed as a percentage
- **Spirometry can also be used to measure:**
 - VC: slow vital capacity
 - FEV₁/VC: the ratio of FEV₁ to the slow vital capacity
- Values of FEV₁ and FVC are expressed as a percentage of the predicted normal for a person of the same sex, age and height
- **COPD can be diagnosed only if FEV₁ <80% predicted and FEV₁/FVC <0.7 (70%)**
The severity of the airflow obstruction in COPD is indicated by the extent of FEV₁ reduction
- Asthma may show the same abnormalities on spirometry as COPD – if there is diagnostic doubt spirometry following reversibility testing may be used to identify asthma


N.B. Predicted values may be lower in non-caucasians.

Limitations of spirometry


- Results dependant on patient technique
 - Ensure at least 3 consistent, acceptable readings before assessing spirometry values
 - Difficult to be performed on children <8 years old. Diagnosis of asthma largely depending on clinical history eg. Viral induced wheeze vs asthma

Inconsistent and consistent volume-time curves

Three consistent volume-time curves are required of which the best two curves are within 100ml or 5% of each other.

Consistent: Three acceptable and consistent traces.

Inconsistent: Although each trace is technically acceptable, they are inconsistent.

Limitations of spirometry

- Need to withhold treatment to do spirometry
 - Don't perform during acute exacerbation
 - Withhold SABA for 6-8 hours
 - Withhold LABA – 12 – 24 hours

Interpreting results

- Minimum of 3 *consistent and acceptable* readings before assessing spirometry
- Use *best of 3* consistent readings for FEV₁ and FVC
- Compare to predicted normal values (dependant on age, sex, height, ethnicity, smoking status)
- ***Abnormal values***
 - FEV₁ <80% of predicted
 - FVC < 80% of predicted
 - FEV₁:FVC <0.7

Obstructive vs restrictive lung diseases

	Obstructive	Restrictive
FEV ₁	< 80%	<80%
FVC	reduced	<80%
FEV ₁ / FVC	<0.7	>= 0.7

FEV₁/FVC <
0.7

→ obstructive

- Now Is it asthma or COPD?
- Is FEV₁ reversible?
 - Ie. Does FEV₁ improve with bronchodilator treatment?
if FEV₁ improves by at least 200mL AND 12%, or 12%
(children) : asthma
 - If FEV₁ shows only limited (or no) improvement: COPD
"not fully reversible"

FEV₁/FVC
normal (> 0.7),

but FVC <0.8

Restrictive lung
diseases

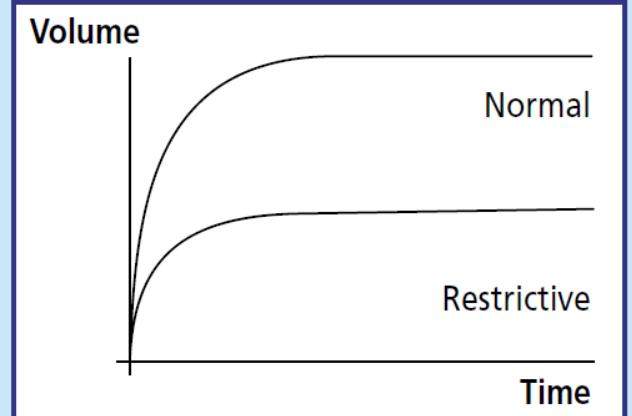
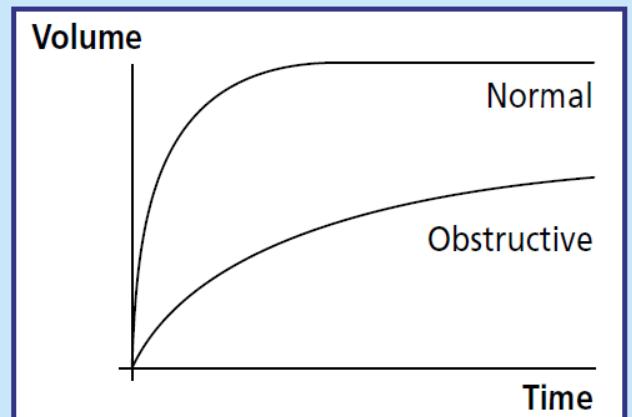
- Refer to respiratory physician for Pulmonary Function Testing (PFT)
- Eg
 - Fibrosing alveolitis
 - Asbestosis
 - Sarcoidosis

Shapes can give clues

- Volume vs time curves

Identifying abnormalities

Spirometry indicates the presence of an abnormality if any of the following are recorded:

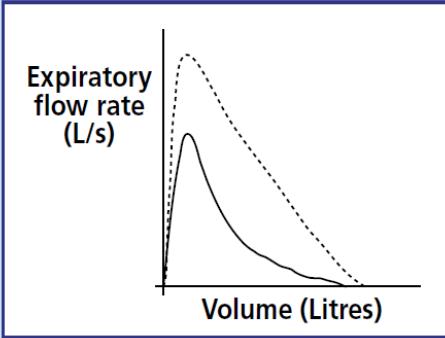


- $FEV_1 < 80\%$ predicted normal
- $FVC < 80\%$ predicted normal
- FEV_1/FVC ratio < 0.7

Obstructive disorder:

- FEV_1 reduced ($< 80\%$ predicted normal)
- FVC is usually reduced but to a lesser extent than FEV_1
- FEV_1/FVC ratio reduced (< 0.7)

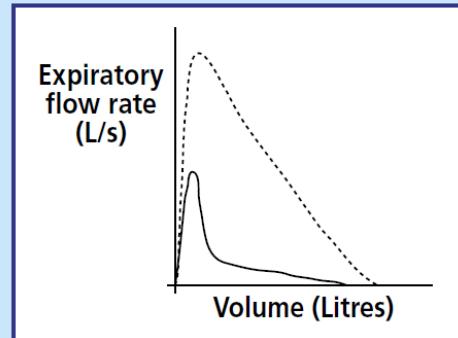
Restrictive disorder:

- FEV_1 reduced ($< 80\%$ predicted normal)
- FVC reduced ($< 80\%$ predicted normal)
- FEV_1/FVC ratio normal (> 0.7)

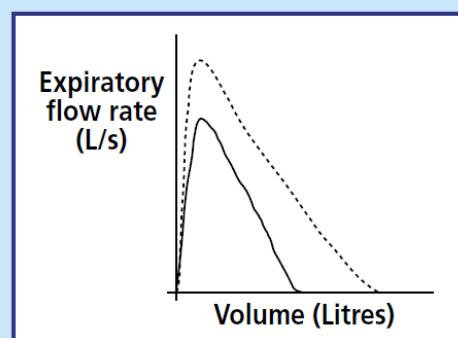

Shapes can give clues

Flow rate vs volume loops

Identifying abnormalities with flow-volume curves

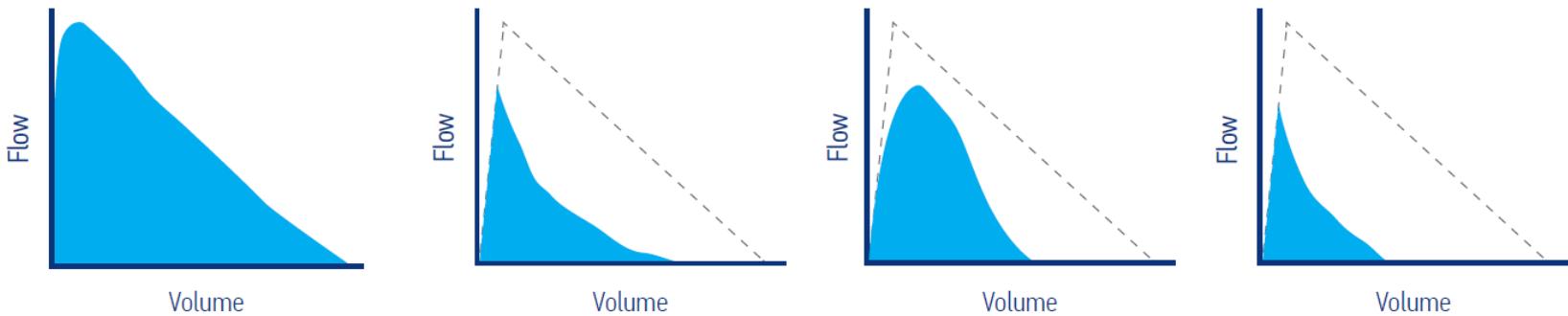

Obstructive disorder:

In this example of a patient with obstructive airways disease, the peak expiratory flow (PEF) is reduced and the decline in airflow to complete exhalation follows a distinctive dipping (or concave) curve.


Severe obstructive disorder:

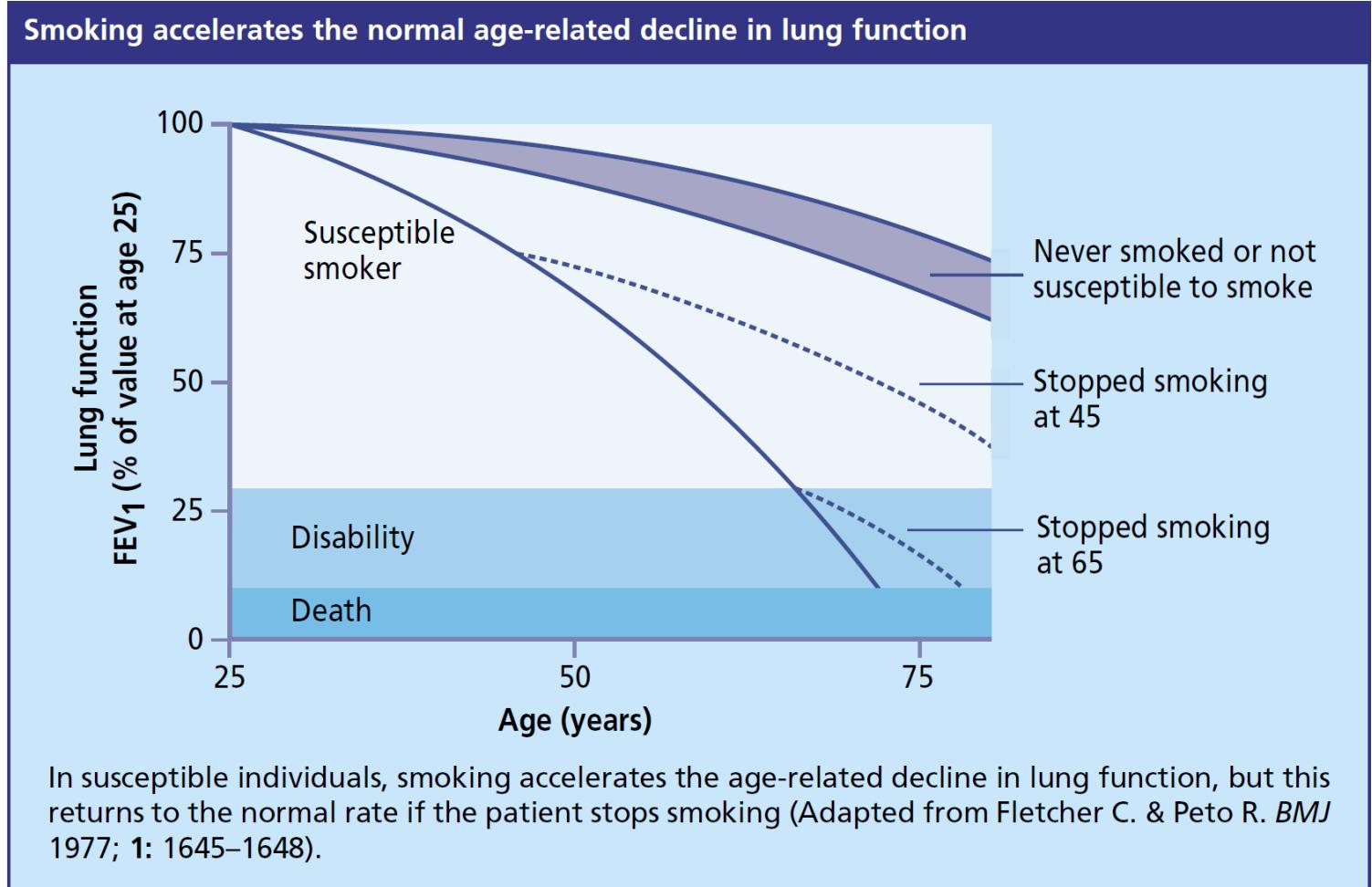
In a severe airflow obstruction, particularly with emphysema, the characteristic 'steeple pattern' is seen in the expiratory flow trace.

Restrictive disorder:


The pattern observed in the expiratory trace of a patient with restrictive defect is normal in shape but there is an absolute reduction in volume.

Mixed lung diseases

- May have features of both obstructive and restrictive lung diseases
 - Eg. Smoker with asbestosis
- Can you guess the shape of the flow-volume loop?


Take home messages

Types of ventilatory defects

	Obstruction	Restriction	Mixed defect
Problem	Expiratory airflow limitation: unable to blow out quickly <i>e.g. asthma, COPD, overlap of asthma and COPD</i>	Limitation to inspiration: small lungs <i>e.g. obesity, pulmonary fibrosis, pleural/chest wall disease, weak inspiratory muscles</i>	Small lungs and unable to blow out quickly
Spirometry findings	Reduced FEV_1/FVC ratio	Low FVC but normal or high FEV_1/FVC ratio	Reduced FEV_1/FVC ratio plus low FVC

Smoking cessation reduces likelihood of disability or death

Spirometry 101

- 1. Is FEV₁ reduced less than 80% of predicted? → Abnormal
- 2. Is FVC reduced less than 80% predicted? → Abnormal
 - Check that FEV₁:FVC is normal (>0.7) → Restrictive or normal
- 3. If FVC is not reduced less than 80% of predicted
 - check FEV₁:FVC < 0.7 → obstructive
 - Is it reversible → asthma
 - Not reversible → COPD
- 4. Check whether consistent with clinical history
(COPD and asthma can co-exist; restrictive and obstructive diseases can co-exist)
- 5. Check shapes of volume-time and flow-volume loops
 - Are there elements of both? Eg. Mixed lung disease
- 6. Patient centred explanation-
 - restrictive is “a problem with breathing in”;
 - obstructive is “a problem with “breathing out”
 - “these inhalers are to help you breathe”

References:

- Asthma Foundation- Spirometry Quick Reference Guide
<https://www.nationalasthma.org.au/living-with-asthma/resources/health-professionals/information-paper/spirometry-quick-reference-guide>
- British Thoracic Society – Spirometry in practice
[https://www.brit-thoracic.org.uk/document-library/delivery-of-respiratory-care/spirometry/spirometry-in-practice-a-practical-guide-\(2005\)/](https://www.brit-thoracic.org.uk/document-library/delivery-of-respiratory-care/spirometry/spirometry-in-practice-a-practical-guide-(2005)/)
- Asthma Handbook
- <http://www.asthmahandbook.org.au/diagnosis/adults/initial-investigations/lung-function>
- COPD-X Plan- Confirm, Optimise, Prevent, Develop, manage eXacerbations
- <http://copdx.org.au/copd-x-plan/the-copd-x-plan-pdf/>